Rearrangement Inequality

Yue Kwok Choy

The rearrangement inequality (also known as permutation inequality) is easy to understand and yet a powerful tool to handle inequality problems.

Definition Let $a_1 \le a_2 \le \ldots \le a_n$ and $b_1 \le b_2 \le \ldots \le b_n$ be any real numbers.

- (a) $S = a_1b_1 + a_2b_2 + ... + a_nb_n$ is called the *Sorted sum* of the numbers.
- (b) $R = a_1b_n + a_2b_{n-1} + ... + a_nb_1$ is called the *Reversed sum* of the numbers.
- (c) Let $c_1, c_2, ..., c_n$ be any permutation of the numbers $b_1, b_2, ..., b_n$. $P = a_1c_1 + a_2c_2 + ... + a_nc_n$ is called the *Permutated sum* of the numbers.

Rearrangement inequality $S \ge P \ge R$

Proof

- (a) Let P(n) be the proposition : $S \ge P$.
 - P(1) is obviously true.

Assume P(k) is true for some $k \in \mathbf{N}$.

For P(k + 1), Since the c's are the permutations of the b's, suppose $b_{k+1} = c_i$ and $c_{k+1} = b_j$ $(a_{k+1} - a_i)(b_{k+1} - b_j) \ge 0 \implies a_ib_j + a_{k+1}b_{k+1} \ge a_i b_{k+1} + a_{k+1}b_j$ $\implies a_jb_i + a_{k+1}b_{k+1} \ge a_i c_i + a_{k+1} c_{k+1}$

So in P, we may switch c_i and c_{k+1} to get a possibly larger sum.

After switching of these terms, we come up with the inductive hypothesis P(k).

 \therefore P(k + 1) is also true.

By the principle of mathematical induction, P(n) is true $\forall n \in \mathbf{N}$.

(b) The inequality $P \ge R$ follows easily from $S \ge P$ by replacing $b_1 \le b_2 \le \ldots \le b_n$ by $-b_n \ge -b_{n-1} \ge \ldots \ge -b_1$.

Note:

(a) If a_i 's are strictly increasing, then equality holds (S = P = R) if and only if the b_i 's are all equal.

(b) Unlike most inequalities, we do not require the numbers involved to be positive.

- **Corollary 1** Let $a_1, a_2, ..., a_n$ be real numbers and $c_1, c_2, ..., c_n$ be its permuation. Then $a_1^2 + a_2^2 + ... + a_n^2 \ge a_1c_1 + a_2c_2 + ... + a_nc_n$
- **Corollary 2** Let $a_1, a_2, ..., a_n$ be **positive** real numbers and $c_1, c_2, ..., c_n$ be its permuation. Then $\frac{c_1}{a_1} + \frac{c_2}{a_2} + ... + \frac{c_n}{a_n} \ge n$

The rearrangement inequality can be used to prove many famous inequalities. Here are some of the highlights.

Arithmetic Mean - Geometric Mean Inequality $(A.M. \ge G.M.)$

Let $x_1, x_2, ..., x_n$ be positive numbers. Then $\frac{x_1 + x_2 + ... + x_n}{n} \ge \sqrt[n]{x_1 x_2 ... x_n}$.

Equality holds if and only if $x_1 = x_2 = \ldots = x_n$.

Geometric Mean –Harmonic Mean Inequality (G.M. ≥ H.M.)

Let $x_1, x_2, ..., x_n$ be positive numbers. Then $\sqrt[n]{x_1 x_2 ... x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}}$

Proof Define G and $a_1, a_2, ..., a_n$ similarly as in the proof of A.M. – G.M. By Corollary 2, $n \le \frac{a_1}{a_2} + \frac{a_2}{a_3} + ... + \frac{a_n}{a_1} = \frac{G}{x_1} + \frac{G}{x_2} + ... + \frac{G}{x_n}$ which then gives the result.

Root Mean Square - Arithmetic Mean Inequality $(R.M.S. \ge A.M.)$

Let
$$x_1, x_2, ..., x_n$$
 be numbers. Then $\sqrt{\frac{x_1^2 + x_2^2 + ... + x_n^2}{n}} \ge \frac{x_1 + x_2 + ... + x_n}{n}$

Proof By Corollary 1, we cyclically rotate x_i ,

$$\begin{array}{rcl} x_1^{\ 2} + x_2^{\ 2} + \ldots + x_n^{\ 2} & = & x_1 x_1 + x_2 x_2 + \ldots + x_n x_n \\ x_1^{\ 2} + x_2^{\ 2} + \ldots + x_n^{\ 2} & \geq & x_1 x_2 + x_2 x_3 + \ldots + x_n x_1 \\ x_1^{\ 2} + x_2^{\ 2} + \ldots + x_n^{\ 2} & \geq & x_1 x_3 + x_2 x_4 + \ldots + x_n x_2 \\ & \ldots & \geq & \ldots \\ x_1^{\ 2} + x_2^{\ 2} + \ldots + x_n^{\ 2} & \geq & x_1 x_n + x_2 x_1 + \ldots + x_n x_{n-1} \end{array}$$

Adding all inequalities together, we have

$$n(x_1^2 + x_2^2 + \dots + x_n^2) \ge (x_1 + x_2 + \dots + x_n)^2$$

Result follows. Equality holds \Leftrightarrow $x_1 = x_2 = ... = x_n$

Cauchy -Bunyakovskii - Schwarz inequality (CBS inequality)

Let a_1, a_2, \ldots, a_n ; b_1, b_2, \ldots, b_n be real numbers.

Then
$$(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \le (a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)$$

Proof The result is trivial if $a_1 = a_2 = \ldots = a_n = 0$ or $b_1 = b_2 = \ldots = b_n = 0$. Otherwise, define

$$\mathbf{A} = \sqrt{\mathbf{a}_{1}^{2} + \mathbf{a}_{2}^{2} + \dots + \mathbf{a}_{n}^{2}} \quad , \quad \mathbf{B} = \sqrt{\mathbf{b}_{1}^{2} + \mathbf{b}_{2}^{2} + \dots + \mathbf{b}_{n}^{2}}$$

Since both A and B are non-zero, we may let $x_i = \frac{a_i}{A}$, $x_{n+i} = \frac{b_i}{B}$ $\forall 1 \le i \le n$.

By Corollary 1, $2 = \frac{a_1^2 + a_2^2 + ... + a_n^2}{A^2} + \frac{b_1^2 + b_2^2 + ... + b_n^2}{B^2} = x_1^2 + x_2^2 + ... + x_{2n}^2$ $\geq x_1 x_{n+1} + x_2 x_{n+2} + ... + x_n + x_{2n} + x_{n+1} x_1 + x_{n+2} x_2 + ... + x_{2n} x_n$ $= \frac{2(a_1 b_1 + a_2 b_2 + ... + a_n b_n)}{AB}$ $\Leftrightarrow (a_1 b_1 + a_2 b_2 + ... + a_n b_n)^2 \leq (a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)$ Equality holds $\Leftrightarrow x_i = x_{n+i} \iff a_i B = b_i A \quad \forall \ 1 \le i \le n.$

Chebyshev's inequality

Let $x_1 \le x_2 \le \ldots \le x_n$ and $y_1 \le y_2 \le \ldots \le y_n$ be any real numbers.

Then
$$x_1y_1 + x_2y_2 + \dots + x_ny_n \ge \frac{(x_1 + x_2 + \dots + x_n)(y_1 + y_2 + \dots + y_n)}{n} \ge x_1y_n + x_2y_{n-1} + \dots + x_ny_1$$

 $\label{eq:proof} {\mbox{Proof}} {\mbox{ By Rearrangement inequality, we cyclically rotate } x_i {\mbox{ and } y_i ,}$

$x_1y_1 + x_2y_2 + \ldots + x_ny_n$	=	$x_1y_1+x_2y_2+\ldots+x_ny_n$	\geq	$x_1y_n+x_2y_{n\text{-}1}+\ldots+x_ny_1$
$x_1y_1+x_2y_2+\ldots+x_ny_n$	\geq	$x_1y_2+x_2y_3+\ldots+x_ny_1$	\geq	$x_1y_n+x_2y_{n\text{-}1}+\ldots+x_ny_1$
	\geq		\geq	
$x_1y_1+x_2y_2+\ldots+x_ny_n$	\geq	$x_1y_n + x_2y_{n-1} + \ldots + x_ny_1$	=	$x_1y_n + x_2y_{n-1} + \ldots + x_ny_1$

Adding up the inequalities and divide by n, we get our result.

	Exercise	Hint		
1.	Find the minimum of $\frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}, \ 0 < x < \frac{\pi}{2}$	Consider $(\sin^3 x, \cos^3 x), (\frac{1}{\sin x}, \frac{1}{\cos x})$		
2.	Proof: (i) $a^2 + b^2 + c^2 \ge ab + bc + ca$	For (ii) and questions below,		
	(ii) $a^{n} + b^{n} + c^{n} \ge ab^{n-1} + bc^{n-1} + ca^{n-1}$	Without lost of generality, let $a \le b \le c$		
		Consider (a, b, c) , $(a^{n-1}, b^{n-1}, c^{n-1})$		
3.	Proof: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge \frac{a+b+c}{abc}$	Consider $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right), \left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$		
4.	Proof: $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{b}{a} + \frac{c}{b} + \frac{a}{c}$	Consider $\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)$, $\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)$		
5.	Proof: $\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge a + b + c$	Consider $(a^2, b^2, c^2), (\frac{1}{a}, \frac{1}{b}, \frac{1}{c})$		
6.	Proof: If a, b, c > 0 and n \in N then $\frac{a^{n}}{b+c} + \frac{b^{n}}{c+a} + \frac{c^{n}}{a+b} \ge \frac{a^{n-1} + b^{n-1} + c^{n-1}}{2}$	Consider (a^n, b^n, c^n) , $\left(\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}\right)$		
7.	Proof: If a, b, c > 0, then $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$	Consider (a, b, c) , (log a, log b, log c) and use Chebyshev's inequality		