
Series 

1. The sum of the first, second and third terms of a geometric progression to the sum of the third, fourth and fifth 

 terms is  4 : 9 .  Find the tenth term of the series, if the sixth term is  
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3. If  sn  denotes the sum of  n  terms of the series    (r ≠ 1) , show that ...1 32 ++++ rrr
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4. Find the sum of the first  n  terms of a series whose  nth  term is  
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6. The  nth  term of a certain series is of the form  a + bn + cn2 , where  a, b, c  are numbers .  If the first 

 three terms are  2, -1, -3 ,  find the values of  a,  b  and  c  and the sum of the first  n  terms . 

7. Find the sum of  n  terms of the series :    ( ) ( ) ( ) ...sin1sin1sin11 33222 +θ++++θ+++θ++ xxxxxx  ,  

and  prove that the sum approaches the limit  
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  as  n  increases indefinitely, provided 

that  x  lies between certain limits.  What are these limits ? 

8. Find the value of   3 4 3 4 ...baba   continued to infinity.  ( This value is assumed to exist. ) 

9. Prove that the sum of the terms within the  nth – bracket of the series : (1) + (3 + 5) + (7 + 9 + 11) + (13 + 15 

 + 17 + 19) + …   is  n3 , and that the sum of the terms in the first  n  brackets is  ( )22 1
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 (ii) Prove the following general formula 
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 (iii) Put  ,  prove the formula   ( ) kkkk
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 (iv) (a) Prove that   , LnCnBnAnnS kkkkkkk
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i.e. that the sum  Sk(n)  can be represented as a polynomial of the  (k+1) th  degree in  n  with 

coefficients independent of  n  and without a constant term . 
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 (v) Show that the following formulas take place 
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 (vi) Prove that the following relations take place 

    2232 2,32,34, SSSSSSSSSSS =+=++== 37523553113

11. Determine the sums of the following series 

 (i)     (ii)  122 ...941 −++++ nxnxx 132333 ...321 −++++ nxnxx

 (iii) 
12
12

...
8
7

4
5

2
3

1
−

−
+++++

n

n
    (iv) ( )

1

1

2
12

1...
8
7

4
5

2
3

1
−

− −
−++−+−

n

n n
 

12. Determine the sums of the following series 

 (i)     (ii)  ( ) nn 11...4321 −−++−+− ( ) 212222 1...4321 nn−−++−+−

(iii)    (iv) . ( 22222 14...7531 −−+−+− n ) ( ) 2222 1...342312 nn +++×+×+×

13. Find the sum of  n  numbers of the form  1, 11, 111, 1111, …. 

14. Prove the identity 
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15. Compute the sum 
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16. Find the sum of  n  terms of the series whose  nth term  is 
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