Transformation

- **1.** Find the 2 x 2 matrices representing the following transformations:
 - (a) First an expansion by a factor of 2 in the x-direction, then a reflection in the x-axis.
 - (b) First a reflection in the line y = -x, then a rotation through an angle of 90° anti-clockwisely about the origin.
 - (c) First a rotation about the origin through an angle of 45° anti-clockwisely, then an expansion by a factor of $\sqrt{2}$ in the x-direction, then finally an expansion by a factor of $2\sqrt{2}$ in the y-direction.

.

Ans. (a)
$$\begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$

2. Show that the unit circle centre origin under the transformation of an expansion in the x-direction with a factor of a and an expansion in the y-director with a factor b becomes an ellipse with major axis a and minor axis b.

3. The points on the R² plane are transformed by the following equations:
$$\begin{cases} x' = -x + \sqrt{3} y \\ y' = \sqrt{3} x + y \end{cases}$$

(a) If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the matrix representing the above transformation, i.e. $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, find $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

(b) Express the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ found in (a) in the form $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

where k > 0.

Hence, describe the geometrical meaning of the transformation.

- (c) Find the equation of the image of the curve (Γ) : $x^2 + 3y^2 2\sqrt{3}xy 4\sqrt{3}x 4y = 0$ under the above transformation. Hence, describe the shape of the curve (Γ) .
- 4. A triangle has vertices A(-3, -2), B(1, 1) and C(-1, 2).

(a) (i) Write down, in matrix form, a translation Γ , which maps A to the origin.

- (ii) Write down the coordinates of the images B' of B and C' of C under the translation Γ .
- (b) (i) Find the matrix of the rotation, R, about the origin which will map B' to a point on the positive x-axis.
 - (ii) Find the coordinates of the images B" of B' and C" of C' under the rotation R.
 - (iii) Hence, calculate the area of $\triangle ABC$.

Ans. (a) (ii)
$$B' = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, C' = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 (b) (i) $\frac{1}{5} \begin{pmatrix} 4 & 3 \\ -3 & 4 \end{pmatrix}$ (ii) $\begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ (iii) 5

5. In each of the following, find the equation of the image of the curve (Γ) under the transformation specified.

- (Γ): $5x^2 + 7y^2 2\sqrt{3}xy 4 = 0$ [a rotation through an angle of $\frac{5\pi}{6}$ about the origin.] **(a)** (Γ): $y^2 - x^2 - 2\sqrt{3}xy - 2 = 0$ [a reflection in the line through the origin making **(b)** an angle of $\frac{\pi}{3}$ with the positive x-axis.]
- (c) (Γ) : $x^2 + y^2 4x = 0$ [a reflection in the line y = x followed by a shear $\begin{pmatrix} 1 & k \\ c & 1 \end{pmatrix}$

which maps (1, 1) to (-1, -3).]

Ans. (a) $X^2 + 2Y^2 = 1$ (b) $X^2 - Y^2 = 1$ (c) $17X^2 + 5Y^2 + 12XY + 112X + 28Y = 0$

Find a symmetric matrix Q such that the conic equation $5x^2 + 8y^2 - 4xy - 36 = 0$ can be 6. (a) written as $(x \ y) Q \begin{pmatrix} x \\ v \end{pmatrix} - 36 = 0.$ **Ans.** $\begin{pmatrix} 5 & -2 \\ -2 & 8 \end{pmatrix}$

Let P be the matrix of rotation through an acute angle θ about the origin. **(b)**

Express P in terms of θ . (i)

(ii) Show that
$$P Q P^{-1} = \begin{pmatrix} 5+3\sin^2\theta + 2\sin 2\theta & -\frac{3}{2}\sin 2\theta - 2\cos 2\theta \\ -\frac{3}{2}\sin 2\theta - 2\cos 2\theta & 5+3\cos^2\theta - 2\sin 2\theta \end{pmatrix}$$

(iii) Hence, find the value of $\tan \theta$ if P Q P⁻¹ is a diagonal matrix. Ans. $\tan \theta = 2$

With the value of θ found in (b), find the equation of the image of the conic in (a) under the (c) **Ans.** $9X^2 + 4Y^2 = 36$ rotation represented by P.

7. Let T be the translation which maps the origin to the point (α, β) and Q be the reflection about the line x - $\sqrt{3}$ y = 0. Let (Γ): x² - y² - 2 $\sqrt{3}$ xy - 2x + 2 $\sqrt{3}$ y + 3 = 0. If (x', y') is the image of (x, y) under T, (a)

(i) find the equation of the image of (Γ) under T, $((x^{2} - \alpha)^{2} - 2\sqrt{3}(x^{2} - \alpha)(y^{2} - \beta) - (y^{2} - \beta)^{2} - 2(x^{2} - \alpha) + 2\sqrt{3}(y^{2} - \beta) + 3 = 0)$ (ii) hence, determine the values of α and β so that the equation in (a) (i) has no x' and y' terms.

- **Ans.** $\frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ **(b)** (i) Find the matrix of the reflection Q. (ii) If (X, Y) is the image of (x', y') under Q, show that $\begin{cases} x' = \frac{X + \sqrt{3} Y}{2} \\ y' = \frac{\sqrt{3} X - Y}{2} \end{cases}$
- (c) Hence, find the equation of the image of the curve (Γ) under the translation T followed by the reflection Q.