<u>Area</u>

Question 1

A trapezium ABCD with AB//DC is divided into four triangles by its diagonals.

Let the triangles adjacent to the parallel sides have areas a and b.

Find the area of the trapezoid in terms of a and b.

Question 2

ABCD is a rectangle. The areas of the right angled triangles are a, b, c, as in the figure.

Find the area of the triangle, S, in terms of a, b, c.

Question 3

ABC is a triangle. BD and CE cut at F. If area of \triangle BEF = a, area of \triangle BFC = b, area of \triangle CFD = c, find the area of the quadrilateral AEFD.

Answers

Question 1

Let the two diagonals AC and BD meets at E.

Let DE = x, BE = y c : a = x : y, b : d = x : y $\therefore c : a = b : d$ $\therefore ab = cd$ (1) Area of $\triangle ACD = Area of <math>\triangle BCD$ $\therefore c + b = d + b$ $\therefore c = d$ (2) (2) \downarrow (1), $c = d = \sqrt{ab}$

 $\therefore \text{ Area of trapezium ABCD} = a + b + c + d = a + b + 2\sqrt{ab} = \left(\sqrt{a} + \sqrt{b}\right)^2$

Question 2

р

С

Consider only the positive root, we have:

$$pq = \frac{2(a+b+c) + \sqrt{[2(a+b+c)]^2 - 4(1)(-4ac)}}{2(1)} = (a+b+c) + \sqrt{(a+b+c)^2 + 4ac}$$

$$\therefore S = pq - (a+b+c) = \sqrt{(a+b+c)^2 + 4ac}$$

Question 3

