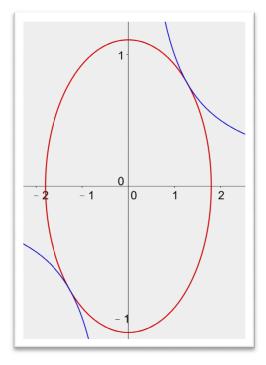
Conics

Given that the ellipse $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$ is tangential to the hyperbola xy = 1 and t > 1. Find the value of t.



Method 1

 $xy = 1 \Rightarrow y = \frac{1}{x} \Rightarrow \frac{dy}{dx} = -\frac{1}{x^2}$ $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1 \Rightarrow \frac{2x}{t+1} + \frac{2y}{t-1} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x(t-1)}{y(t+1)}$ Since $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$ is tangential to the hyperbola xy = 1, we have $-\frac{1}{x^2} = -\frac{x(t-1)}{y(t+1)} \Rightarrow y = \frac{t-1}{t+1}x^3 \dots (1)$ Substitute (1) in xy = 1, $\frac{t-1}{t+1}x^4 = 1 \Rightarrow x = \pm \sqrt[4]{\frac{t+1}{t-1}}$, since t > 1Substitute in (1), $y = \frac{t-1}{t+1} \left(\pm \sqrt[4]{\frac{t+1}{t-1}} \right)^3 = \pm \sqrt[4]{\frac{t-1}{t+1}}$ The points of contact of the given ellipse and hyperbola is $\left(\pm \sqrt[4]{\frac{t+1}{t-1}}, \pm \sqrt[4]{\frac{t-1}{t+1}} \right)$ Substitute this points in the equation of the ellipse $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$,

$$\frac{\left(\pm\sqrt[4]{t+1}\right)}{t+1} + \frac{\left(\pm\sqrt[4]{t+1}\right)}{t-1} = 1 \Longrightarrow \frac{1}{\sqrt{t^2-1}} + \frac{1}{\sqrt{t^2-1}} = 1 \Longrightarrow \frac{2}{\sqrt{t^2-1}} = 1 \Longrightarrow t = \sqrt{5}, \text{ since } t > 1$$

Method 2

$$xy = 1 \Longrightarrow y = \frac{1}{x}$$

Substitute in $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$, $\frac{x^2}{t+1} + \frac{(1/x)^2}{t-1} = 1$
 $(t-1)(x^2)^2 - (t^2 - 1)(x^2) + (t+1) = 0$ (1)

Since
$$\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$$
 is tangential to the hyperbola $xy = 1$, we have
 $\Delta \text{ of } (1) = (t^2 - 1)^2 - 4(t - 1)(t + 1) = 0$
 $(t^2 - 1)^2 - 4(t - 1)(t + 1) = 0$
 $\therefore t = \sqrt{5}$, since $t > 1$.

Method 3

The parametric form of
$$\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$$
 is $\begin{cases} x = \sqrt{t+1} \cos \theta \\ y = \sqrt{t-1} \sin \theta \end{cases}$, $0 \le \theta < 2\pi$.
Substitute in $xy = 1$, we get $(\sqrt{t+1} \cos \theta)(\sqrt{t-1} \sin \theta) = 1 \Longrightarrow \sin 2\theta = \frac{2}{\sqrt{t^2-1}}$.
Since $\frac{x^2}{t+1} + \frac{y^2}{t-1} = 1$ is tangential to the hyperbola $xy = 1$, we have

$$\sin 2\theta = 1 \Longrightarrow \frac{2}{\sqrt{t^2 - 1}} = 1 \Longrightarrow t = \sqrt{5}$$
, since $t > 1$.

(For $\sin 2\theta = 1$, we have one root. For other values of $\sin 2\theta$, we can get two roots or no root.)

Yue Kwok Choy 13-6-2016